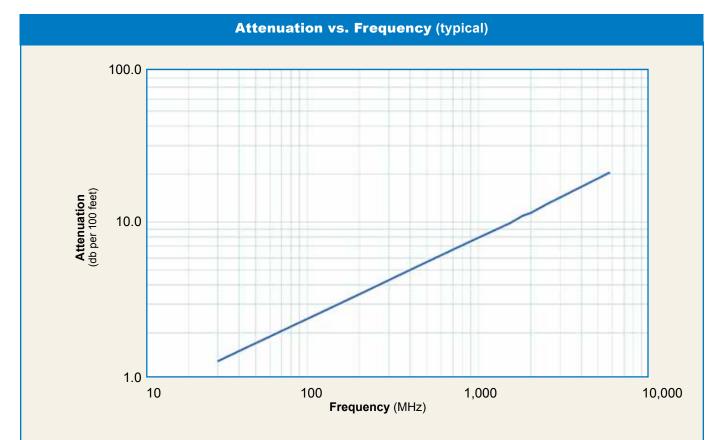
| | LMR®-240 | Flexible Low Loss Communications Coax

Ideal for...

- Jumper Assemblies in Wireless Communications Systems
- Short Antenna Feeder runs (e.g. WLL, GPS, LMR, Mobile Antennas)
- Any application (e.g. WLL, GPS, LMR, WLAN, WISP, WiMax, SCADA, Mobile Antennas) requiring an easily routed, low loss RF cable
- LMR* standard is a UV Resistant Polyethylene jacketed cable designed for 20-year service outdoor use. The bending and handling characteristics are significantly better than air-dielectric and corrugated hard-line cables.
- LMR°-DB is identical to standard LMR plus has the advantage of being watertight. The addition of waterproofing compound in and around the foil/braid insures continuous reliable service should the jacket be inadvertently damaged during installation or in the future.
- LMR*-FR is a non-halogen (non-toxic), low smoke, fire retardant cable designed for in-building runs that can be routed anywhere except air handling plenums. LMR-FR is UL/NEC & CSA rated 'CMR' and 'FT4' respectively, meets FAA FAR25 requirements and is MSHA-P for mining applications.
- LMR*- FR-PVC is a general-purpose indoor cable and has a UL/NEC & CSA rating of 'CMR' and 'FT4' respectively. It is less expensive than LMR-FR, however it emits toxic fumes (HCL) and greater smoke density when burned.
- LMR°-PVC is designed for low loss general-purpose applications and is somewhat more flexible than the standard polyethylene jacketed LMR.
- LMR*-PVC-W is a white-jacketed version of LMR-PVC for marine and other applications where color compatibility is desired.
- LMR*- MA is a flexible cable designed specifically for mobile antenna applications. It has a PVC jacket and un-bonded aluminum tape to facilitate end stripping with automated equipment.
- Flexibility and bendability are hallmarks of the LMR-240 cable design. The flexible outer conductor enables the tightest bend radius available for any cable of similar size and performance.

- Low Loss is another hallmark feature of LMR-240. Size for size LMR has the lowest loss of any flexible cable and comparable loss to semirigid hard-line cables.
- **RF Shielding** is 50 dB greater than typical single shielded coax (40 dB). The multi-ply bonded foil outer conductor is rated conservatively at > 90 dB (i.e. >180 dB between two adjacent cables).
- Weatherability: LMR-240 cables designed for outdoor exposure incorporate the best materials for UV resistance and have life expectancy in excess of 20 years.
- Connectors: A wide variety of connectors are available for LMR-240 cable, including all common interface types, reverse polarity, and a choice of solder or non-solder center pins. Most LMR connectors employ crimp outer attachment using standard hex crimp sizes.
- Cable Assemblies: All LMR-240 cable types are available as pre-terminated cable assemblies. Refer to the section on FlexTech for further details.

Part Description						
Part Number	Application	Jacket	Color	Code		
LMR-240	Outdoor	PE	Black	54021		
LMR-240-DB	Outdoor/Watertight	PE	Black	54090		
LMR-240-FR	Indoor/Outdoor Riser CMR	FRPE	Black	54029		
LMR-240-FR-PVC	Indoor/Outdoor Riser CMR	FRPVC	Black	54214		
LMR-240-PVC	General Purpose	PVC	Black	54140		
LMR-240-PVC-V	V General Purpose	PVC	White	54202		
LMR-240-MA	Indoor & Mobile Antenna	PVC	Black	54046		


Construction Specifications								
Description	Material	In.	(mm)					
Inner Conductor	Solid BC	0.056	(1.42)					
Dielectric	Foam PE	0.150	(3.81)					
Outer Conductor	Aluminum Tape	0.155	(3.94)					
Overall Braid	Tinned Copper	0.178	(4.52)					
Jacket	(see table above)	0.240	(6.10)					

Mechanical Specifications Performance Property Units US (metric) Bend Radius: installation in. (mm) 0.75 (19.1)Bend Radius: repeated in. (mm) 2.5 (63.5)ft-lb (N-m) 0.25 (0.34)**Bending Moment** 0.034 Weight lb/ft (kg/m) (0.05)80 Tensile Strength lb (kg) (36.3)Flat Plate Crush lb/in. (kg/mm) 20 (0.36)

Environmental Specifications								
Performance Property	°F	°C						
Installation Temperature Range	-40/+185	-40/+85						
Storage Temperature Range	-94/+185	-70/+85						
Operating Temperature Range	-40/+185	-40/+85						

Electrical Specifications								
Performance Property	Units							
Velocity of Propagation	%	84						
Dielectric Constant	NA	1.42						
Time Delay	nS/ft (nS/m)	1.21	(3.97)					
Impedance	ohms	50						
Capacitance	pF/ft (pF/m)	24.2	(79.4)					
Inductance	uH/ft (uH/m)	0.060	(0.20)					
Shielding Effectiveness	dB	>90						
DC Resistance								
Inner Conductor	ohms/1000ft (/km)	3.2	(10.5)					
Outer Conductor	ohms/1000ft (/km)	3.89	(12.8)					
Voltage Withstand	Volts DC		1500					
Jacket Spark	Volts RMS		5000					
Peak Power	kW	5.6						

Frequency (MHz)	30	50	150	220	450	900	1500	1800	2000	2500	5800
Attenuation dB/100 ft	1.3	1.7	3.0	3.7	5.3	7.6	9.9	10.9	11.5	12.9	20.4
Attenuation dB/100 m	4.4	5.7	9.9	12.0	17.3	24.8	32.4	35.6	37.7	42.4	66.8
Avg. Power kW	1.49	1.15	0.66	0.54	0.38	0.26	0.20	0.18	0.17	0.15	0.10

Calculate Attenuation =

(0.242080) • √FMHz + (0.000330) • FMHz (interactive calculator available at http://www.timesmicrowave.com/cable_calculators) Attenuation:

VSWR=1.0 ; Ambient = +25°C (77°F)

Power: VSWR=1.0; Ambient = +40°C; Inner Conductor = 100°C (212°F); Sea Level; dry air; atmospheric pressure; no solar loading